Let $(X,\mu)$ be a probability space, $T:X\to X$ measurable and preserves $\mu$, $A:X\to GL_d(\mathbb{R})$ measurable and $\log^+\Vert A\Vert$, $\log^+\Vert A^{-1}\Vert$ integrable. Define $A^1(x)=A(x)$,
$$A^n(x)=A(T^{n-1}x)A^{n-1}(x)=A(T^{n-1}x)\ldots A(x),\qquad n>1$$
and
$$\lambda(x,v)=\lim\limits_n\sup\frac{1}{n}\log\Vert A^n(x)v\Vert$$
The lemma (from Viana's Lectures on Lyapunov Exponents, Lemma 4.4.(iii), p.40) is:
Lemma: $\lambda(x, v+v')=\max\{\lambda(x, v),\lambda(x, v')\}$ if $v+v'\ne 0$.
One side is easy using the fact that limsup and max can be changed in series, thus \begin{align} \max\{\lambda(x, v),\lambda(x, v')\}&=\lim\limits_n\sup\frac{1}{n}\log(\Vert A^n(x)v\Vert+\Vert A^n(x)v'\Vert)\\ &\geq \lim\limits_n\sup\frac{1}{n}\log(\Vert A^n(x)v+ A^n(x)v'\Vert)=\lambda(x, v+v') \end{align} The other side, I thought that maybe $\Vert{Av}\Vert+\Vert{Av'}\Vert\leq c(\Vert{Av}+{Av'}\Vert )$ if $v+v\ne 0, A\in GL_d(R)$, however it's not true as in dim 2 we can use diagonal matrix to make their angle approach $\pi$.
The statement is false.
For a counterexample take say $A(x)=\begin{pmatrix}2 & 0\\0&3\end{pmatrix}$. For $v=(1,1)$ and $v'=(0,-1)$ we have $$ \lambda(x,v)=\lambda(x,v')=\log3\quad\text{but}\quad \lambda(x,v+v')=\log2. $$