The gradient of a function of two variable $f(x,y)$ is given by $$\left( \frac{\partial f}{\partial x} ,\frac{\partial f}{\partial y}\right). $$ It is also evident that gradient points in the direction of the greatest increase or decrease of a function at a point. My question is that whether the gradient vector is tangent to the function $f(x,y)$ at a point or not. The tangent here means that if you cut the graph of the function f(x,y) along the direction of the gradient vector then you will have a 2D curve formed where the function is cut. So is the gradient vector tangent to that curve at the particular point.
2025-01-12 19:23:56.1736709836
A question about gradient.
98 Views Asked by user279180 https://math.techqa.club/user/user279180/detail At
1
There are 1 best solutions below
Related Questions in MULTIVARIABLE-CALCULUS
- I don't understand why we represent functions $f:I \subseteq \Bbb R \to \Bbb R^2$ the way we do.
- question over a integration changes order and hard to compute
- Using the chain rule of differentiation to evaluate an integral along a curve
- Parametrization of intersection of curves
- Parametric line segment in 3-space
- Partial derivative of composition with multivariable function.
- Proving limits with epsilon delta for Multivariable Functions
- How do you find the partial derivative of $F(u, v) = f(x(u, v), y(u, v))$?
- Help with multivariable limit involving log
- A question about gradient.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
The answer is that your question doesn't actually make sense: the graph of $f(x,y)$ lives in $\mathbb{R}^2 \times \mathbb{R}$, whereas $\nabla f$ is in $\mathbb{R}^2$.
What is true is that $\nabla f(a,b)$ is normal to the level curve of $f$ passing through $(a,b)$: this is because, taking a local parametrisation of a level curve, $(x(t),y(t))$, we have $$ f(x(t),y(t)) = c \\ (x(0),y(0))=(a,b),$$ the tangent to this curve at $(a,b)$ is $ (x'(0),y'(0)), $ and differentiating the $f(x(t),y(t))=c$ equation gives $$ 0 = \left. \frac{d}{dt} f(x(t),y(t)) \right|_{(a,b)} = x'(0) \frac{\partial f}{\partial x}(a,b) + y'(0) \frac{\partial f}{\partial y}(a,b) = (x'(0),y'(0)) \cdot \nabla f(a,b), $$ so $$ \nabla f \perp (x'(0),y'(0)). $$
On the other hand, we can consider the surface in $\mathbb{R}^3$ defined by $g(x,y,z) = f(x,y)-z=0$, which is essentially the graph of $f$ in three dimensions. Then $$ \nabla g = (\nabla f, -1), $$ where I've abused notation slightly. By exactly the same idea as before, I can show that $\nabla g$ is normal to the surface $g$ (and hence the graph of $f$): take a parametrisation $(x(t),y(t),z(t))$ of a curve in the surface through $(a,b,c)$, and then differentiate $g(x(t),y(t),z(t))=0$.