Let $k$ be a positive integer and consider the generalized $q-$Fibonacci polynomials $F_n^{(k)}(x)$ which satisfy the recursion $F_n^{(k)}(x) = xF_{n - 1}^{(k)}(x) + q^{n-k} F_{n - k}^{(k)}(x)$ with initial values $F_n^{(k)}(x) = {x^n}$ for $0 \leqslant n < k.$ Denote by $\binom{n}{k}_q$ the $q-$binomial coefficients. I need the identity $$\sum\limits_{j = 0}^{n - 1} {{{( - 1)}^{n - 1 - j}}} {x^k}\binom{n-k}{n-j-1}_q {q^{(k - 1)\left(\binom{n}{2}-\binom{j+1}{2} \right)}}F_{kj}^{(k)}(x) = {x^n}F_{(k - 1)n}^{(k)}(x).$$ Has anyone an idea for a simple proof?
2026-02-22 21:04:11.1771794251
An identity for generalized q-Fibonacci polynomials
56 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in COMBINATORICS
- Using only the digits 2,3,9, how many six-digit numbers can be formed which are divisible by 6?
- The function $f(x)=$ ${b^mx^m}\over(1-bx)^{m+1}$ is a generating function of the sequence $\{a_n\}$. Find the coefficient of $x^n$
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Hard combinatorial identity: $\sum_{l=0}^p(-1)^l\binom{2l}{l}\binom{k}{p-l}\binom{2k+2l-2p}{k+l-p}^{-1}=4^p\binom{k-1}{p}\binom{2k}{k}^{-1}$
- Algebraic step including finite sum and binomial coefficient
- nth letter of lexicographically ordered substrings
- Count of possible money splits
- Covering vector space over finite field by subspaces
- A certain partition of 28
- Counting argument proof or inductive proof of $F_1 {n \choose1}+...+F_n {n \choose n} = F_{2n}$ where $F_i$ are Fibonacci
Related Questions in Q-ANALOGS
- Properties of Gaussian binomial coefficient
- $q$-analog confusion
- Gauss identities of $q$-analog
- Importance of $q$-analog
- $q$-analogs confusion in some steps
- Bijection for $q$-binomial coefficient
- For $|q|<1$, the function $\frac{(az;q)_\infty}{(z;q)_\infty}$ is analytic on $|z|<1$.
- Double sum of Lambert series: Partial sum in closed form desired!
- What closed forms exist for this basic hypergeometric series?
- Can the following integral involving digamma be evaluated in closed form (special functions allowed but not preferred)?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?