How to find the solution of this trigonometric equation $$\cot(x+110^\circ)=\cot(x+60^\circ)\cot x\cot(x-60^\circ)$$
I have used the formulae $$\cos(x+60^\circ)\cos(x-60^\circ)=\cos^2 60^\circ - \sin^2x$$ $$\sin(x+60^\circ)\sin(x-60^\circ)=\sin^2x-\sin^260^\circ$$
How to move further? What is the least positive value of $x$?
$$\cot(x+110^\circ)=\cot(x+60^\circ)\cot x\cot(x-60^\circ)$$
$$\frac{\cot(x+110^\circ)}{\cot x} = \cot(x+60^\circ)\cdot \cot(x-60^\circ)$$
$$\frac{\cos(x+110^\circ)\cdot \sin x}{\sin (x+110^\circ)\cdot \cos x} = \frac{\cos(x+60^\circ)\cdot \cos(x-60^\circ)}{\sin(x+60^\circ)\cdot \sin(x-60^\circ)}$$
Now Using Componendo and Dividendo, We get
$$\frac{\cos(x+110^\circ)\cdot \sin x+\sin(x+110^\circ)\cdot \cos x}{\cos(x+110^\circ)\cdot \sin x-\sin(x+110^\circ)\cdot \cos x} = \frac{\cos(x+60^\circ)\cdot \cos(x-60^\circ)+\sin(x+60^\circ)\cdot \sin(x-60^\circ)}{\cos(x+60^\circ)\cdot \cos(x-60^\circ)-\sin(x+60^\circ)\cdot \sin(x-60^\circ)}$$
$$-\frac{\sin \left[(x+110^\circ)+x\right]}{\sin\left[(x+110^\circ)-x\right]} = \frac{\cos[(x+60^\circ)-(x-60^\circ)]}{\cos[(x+60^\circ)+(x-60^\circ)]}$$
So we get $$-\frac{\sin(2x+110^\circ)}{\sin (110^\circ)} = \frac{\cos (120^\circ)}{\cos (2x)}$$
$$\sin (2x+110^\circ)\cdot \cos (2x) = \frac{1}{2}\sin (110^0)$$
So we get $$2\sin (2x+110^\circ)\cdot \cos (2x) = \sin(110^0)$$
$$\sin(4x+110^\circ)+\sin(110^\circ) = \sin (110^\circ)$$
So we get $$\sin(4x+110^\circ) =0\Rightarrow 4x+110^0 = n\times 180^\circ\;,$$ Where $n\in \mathbb{Z}$