Consider
$$2x^2y\ln(y)+(x^3+x)y'=0$$
I want to determine the integrating factor $m(x,y)$ of the form $m(x,y)=m(xy)$.
Let $a(x,y):=2x^2y\ln(y)$ and $b(x)=x^3+x$.
So I want to find $m(x,y)$ such that $(ma)_y=(mb)_x$ where $(\cdot)_x$ denotes $\frac{d(\cdot)}{dx}$.
$(ma)_y=m_y \cdot x \cdot (2x^2y\ln(y))+m \cdot (2x^2\ln(y)+2x^2)$
$(m_b)_x=m_x \cdot y \cdot (x^3+x)+m \cdot (3x^2+1)$
We used the chain rule there. $m(x,y)_y=m_y\cdot x$
Now, \begin{align}(ma)_y&=(m_b)_x \\ \Leftrightarrow m_y \cdot x \cdot (2x^2y\ln(y))+m \cdot (2x^2\ln(y)+2x^2)&=m_x \cdot y \cdot (x^3+x)+m \cdot (3x^2+1)\end{align}
Now what I don't understand is that they treat $m_y$ as equal to $m_x$, namely $m_y=m_x=m'$ and arrive at
$\Leftrightarrow m'\cdot(2x^3y\ln(y)-yx^3-yx)=m\cdot(3x^2+1-2x^2\ln(y)-2x^2)$
But perhaps this is wrong anyways.
I would appreciate it if somemone could show me how this is done. Also different or easier/faster methods are fine
$$2x^2y\ln(y)+(x^3+x)y'=0$$ Integrating factor $\mu(xy)=\frac 1 {xy}$ $$2x\ln(y)+(x^2+1)\frac {y'}{y}=0$$ $$(x^2+1)'\ln(y)+(x^2+1)(\ln y)'=0$$ $$((x^2+1)(\ln y))'=0$$ Integrate: $$(x^2+1)\ln y=K$$
For the integrating factor : split the problem so that: $$\mu (xy)=\mu(x)\mu(y)$$ Now we want to have: ( the derivative according to y:) $$(\mu (y) y \ln y)'=\mu (y)$$ And also here the derivative is taken according to x: $$2x^2\mu(x)=(\mu (x) (x^3+x))'$$ for this one I find that $$\frac {\mu(x)'}{\mu (x)} =- \frac 1 x $$ $$\implies \mu (x) =\frac 1x$$ For the other one I find that: $$(\mu (y) y \ln y)'=\mu (y)$$ $$\mu' (y) y \ln y+\mu (y)( \ln y + 1)=\mu (y)$$ $$\implies \frac {\mu '(y)}{\mu (y) } =- \frac 1 y \implies \mu (y)= \frac 1 y $$ Therefore: $$\mu (xy) = \mu (x) \mu (y) =\frac 1 {xy}$$
You can also solve it the general way $$\frac {\partial}{\partial y}(M2x^2y \ln y)=\frac {\partial}{\partial x}( M(x^3+x))$$ We obtain here the derivative is taken according to $xy$: $$2x^2(xy M' \ln y +M(\ln (y) +1))=M'y(x^3+x)+M(3x^2+1)$$ Rearranging terms $$M(2x^2 \ln (y)-x^2-1)= M'(x^3y+xy-2x^3y \ln (y))$$ $$M(2x^2 \ln (y)-x^2-1)= M'xy(x^2+1-2x^2\ln (y))$$ It can be simplified as: $$M= -M'xy \implies (\ln (M))'=-\frac 1 {xy}$$ $$\implies M(xy)=\frac 1 {xy}$$