If $x^2\equiv b\pmod{p}$ has a solution, does this imply $x^2\equiv b\pmod{p^2}$ has a solution too?
Assume $p$ is an odd prime.
If $x^2\equiv b\pmod{p}$ has a solution, does this imply $x^2\equiv b\pmod{p^2}$ has a solution too?
Assume $p$ is an odd prime.
Copyright © 2021 JogjaFile Inc.
Yes, if $b\not\equiv 0\pmod{p}$. Proof:
$$\left(x^2-b\right)^2=\left(x^2+b\right)^2-b(2x)^2$$
So if $x^2\equiv b\pmod{p}$, then $\left(x^2+b\right)^2\equiv b(2x)^2\pmod{p^2}$. Since $\gcd(2x,p)=1$ (because $p$ is odd and $b\not\equiv 0\pmod{p}$), $\left(\left(x^2-b\right)\left(2x\right)^{-1}\right)^2\equiv b\pmod{p^2}$.
This way we can also get $x^2\equiv b\pmod{p^n}$ is solvable for all $n\ge 1$.
This also implies: if $p$ is an odd prime and $b\not\equiv 0\pmod{p}$, then if $x^2\equiv b\pmod{p^k}$ has a solution, then $x^2\equiv b\pmod{p^{n+k}}$ has a solution for all $n\ge 0$.