I'm currently reading these three books:
S. Kim, S. J. Karrila - Microhydrodynamics: Principles and Selected Applications
O. A. Ladyzhenskaia -The Mathematical Theory of Viscous Incompressible Flow
C. Pozrikidis - Introduction to Theoretical and Computational Fluid Dynamics
And I cannot work out this formula for the integral representation of the pressure,
$$
p\left(\mathbf{x}_{0}\right)=-\frac{1}{8 \pi} \iint_{D} \mathcal{P}_{i}\left(\mathbf{x}, \mathbf{x}_{0}\right) f_{i}(\mathbf{x}) \mathrm{d} S(\mathbf{x})+\frac{\mu}{4 \pi} \iint_{D} u_{i}(\mathbf{x}) \mathcal{P}_{i k}^{\Sigma}\left(\mathbf{x}, \mathbf{x}_{0}\right) n_{k}(\mathbf{x}) \mathrm{d} S(\mathbf{x})
$$
How can I find the integral representation of the pressure from the representation of the velocity?