Express your answer in terms of the error function:
$$L^{-1}\left[\frac{1}{\sqrt{s^3+as^2}}\right]$$
Clue: $\qquad L\left[\frac{1}{\sqrt{t}}\right]=\sqrt\frac{π}{s} \qquad , \qquad s>0$
Error function: $\frac{2}{\sqrt{π}}\int_0^te^{-w^2}dw$
Express your answer in terms of the error function:
$$L^{-1}\left[\frac{1}{\sqrt{s^3+as^2}}\right]$$
Clue: $\qquad L\left[\frac{1}{\sqrt{t}}\right]=\sqrt\frac{π}{s} \qquad , \qquad s>0$
Error function: $\frac{2}{\sqrt{π}}\int_0^te^{-w^2}dw$
Copyright © 2021 JogjaFile Inc.
The answer, of course, is
$$\mathcal{L}^{-1} \left (\frac1{s \sqrt{s+a}} \right ) = \frac1{i 2 \pi} \int_{c-i \infty}^{c+i \infty} ds \frac{e^{s t}}{s \sqrt{s+a}} = \frac{\operatorname{erf}{\sqrt{a t}}}{\sqrt{a}} $$
Convolution
Note that
$$\mathcal{L} \left (t^{-1/2} \right ) = \sqrt{\pi} s^{-1/2} \implies \mathcal{L} \left (t^{-1/2} e^{-a t} \right ) = \sqrt{\pi} (s+a)^{-1/2}$$
or, written another way
$$\mathcal{L}^{-1} \left (\frac1{\sqrt{s+a}} \right ) = (\pi t)^{-1/2} e^{-a t}$$
Thus, by the convolution theorem,
$$\mathcal{L}^{-1} \left (\frac1{s \sqrt{s+a}} \right ) = \pi^{-1/2} \int_0^t dt' \, t'^{-1/2} \, e^{-a t'}= \frac1{\sqrt{a}} \frac{2}{\sqrt{\pi}} \int_0^{\sqrt{a t}} du \, e^{-u^2}$$
The result follows.