So I have a cut $(P,P')$ on some network and its capacity is $13$. Now I'm told to assume that the current flow on the network is the max flow, is the cut of minimum capacity? So far all we've learned is that the max flow is at most equal to the capacity of the cut but I we haven't dealt with minimum capacity of cut. Thank you in advance.
2025-01-13 08:02:15.1736755335
verifying minimum capacity of cut
104 Views Asked by ponderingdev https://math.techqa.club/user/ponderingdev/detail At
1
There are 1 best solutions below
Related Questions in COMBINATORICS
- How many different games are there in bridge?
- Discrete mathematics, sets, increasing functions
- Number of necklaces of 16 beads with 8 red beads, 4 green beads and 4 yellow beads
- Logic & Reasoning Question
- Delannoy Paths and Pell Sequence Relation
- Combinatorics Problem - Clients using two seperate services
- There are few boxes labelled with $1,2,4,5,7,8,9$ respectively. How many ways to choose $5$ boxes and arranges the boxes in a row.
- Confused by book's given solution to basic combinatorial problem
- How many ways to write a number $n$ as the product of natural numbers $\geq 2$?
- Confused about how to solve basic combinatorial problem
Related Questions in NETWORK-FLOW
- How many “cuts” does a flow network have?
- verifying minimum capacity of cut
- Explain how to find a max $(s-t)$ flow in a network
- Proving the congestion of a butterfly network.
- Network flow as a linear/integer programming problem with special conditional constraints
- Linear programming and shortest path
- Multi-commodity flow problem. What if only one commodity? (Context: column generation)
- Decompose a flow network into several trivial flows
- Reduction to a max flow problem from a sudoku like puzzle
- Max Flow - Changing the capacity of an edge
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
If you have a flow in the network of 13 units then the cut is saturated and 13 will be equal to the maximum flow. Any other cut must then have an equal or larger capacity. So any cut where the flow is equal to the capacity is a minimal cut.