I have an equation
$$\sum_{k=2}^7{7\choose k}{0.01^k}(1-0.01)^{7-k} = 1-(0.99)^7 - 7(0.01)(0.99)^6 \approx 0.002031$$
I don't know what property the teacher used to quickly transform the summation to two simple equations. Can someone please give me a hint?
P.S. This formula is used to calculate binomial probability.
The property is the Law of Total Probability, but you can also do it this way.
$$\begin{align}\sum_{k=2}^7 {^7\mathsf C_k}\,p^k\,(1-p)^{7-k} & = \Big(\sum_{k=0}^7 {^7\mathsf C_k}\,p^k\,(1-p)^{7-k}\Big) - \Big(\sum_{k=0}^1 {^7\mathsf C_k}\,p^k\,(1-p)^{7-k}\Big) \\[1ex] & = (p+(1-p))^7- \Big(\sum_{k=0}^1 {^7\mathsf C_k}\,p^k\,(1-p)^{7-k}\Big) & \textsf{Binomial Expansion} \\[1ex] & = 1- \Big(\sum_{k=0}^1 {^7\mathsf C_k}\,p^k\,(1-p)^{7-k}\Big) \\[1ex] & = 1- {^7\mathsf C_0}\,p^0\,(1-p)^{7-0}-{^7\mathsf C_1}\,p^1\,(1-p)^{7-1} \\[1ex] & = 1- (1-p)^{7}-7\,p\,(1-p)^{6} \\[2ex]\sum_{k=2}^7 {^7\mathsf C_k}\,(0.01)^k\,(0.99)^{7-k} & = 1 - (0.99)^{7}-7(0.01)(0.99)^{6} \\[1ex] & = 0.002\,031\,041\,634\,94 \end{align}$$