What is the $2^{nd}$ derivative of the normal distribution at one standard deviation?
The normal distribution is given by $N(x,\mu ,\sigma)=\frac{1}{\sigma\sqrt{2\pi }}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. To make this problem easier, lets say I have a standard normal distribution($\mu =0,\sigma =1$). So $N\left(x,0,1\right)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$.
$$\frac{d}{dx}N(x,0,1)=\frac{d}{dx}\left(\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\right)$$
$$\frac{d}{dx}N\left(x,0,1\right)=\frac{1}{\:\sqrt{2\pi}}\frac{d}{dx}\left(e^{-\frac{x^2}{2}}\right)$$
$$\frac{d}{dx}N\left(x,0,1\right)=\frac{1}{\:\sqrt{2\pi}}e^{-\frac{\left(x\:\right)^2}{2}\cdot \frac{d}{dx}\left(-\frac{x^2}{2}\right)}$$
$$\frac{d}{dx}N\left(x,0,1\right)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}\cdot -x}$$
So, $$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}\cdot\:-x}$$ is the first derivative. To get the second, I took the derivative of the first.
$$\frac{d}{dx}\left(\frac{d}{dx}N\left(x,0,1\right)\right)=\frac{d}{dx}\left(\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}\cdot \:-x}\right)$$
$$\frac{d}{dx}\left(\frac{d}{dx}N\left(x,0,1\right)\right)=\frac{1}{\:\sqrt{2\pi }}\frac{d}{dx}\left(e^{-\frac{x^2}{2}\cdot\:-x}\right)$$
$$\frac{d}{dx}\left(\frac{d}{dx}N(x,0,1)\right)=\frac{1}{\:\sqrt{2\pi}}e^{-\frac{x^2}{2}\cdot\:-x}\cdot \frac{d}{dx\:}\left(-\frac{x^2}{2}\cdot \:-x\right)$$
$$\frac{d}{dx}\left(\frac{d}{dx}N\left(x,0,1\right)\right)=\frac{1}{\sqrt{2\pi}}\left(e^{-\frac{(x^2}{2}\cdot \:-x}\right)\cdot \left(3\frac{x^2}{2}\right)$$
So now I evaluate $$\frac{1}{\sqrt{2\pi}}\left(e^{-\frac{x^2}{2}\cdot -x}\right)\cdot \left(3\cdot \frac{x^2}{2}\right),$$ at the standard deviation which I set to $\sigma =1$
So, $$\frac{1}{\sqrt{2\cdot :\pi}}\left(e^{-\frac{1^2}{2}\cdot -1}\right)\cdot \left(3\cdot\frac{1^2}{2}\right)$$
$$\frac{1}{\sqrt{2\pi}}\left(e^{-\frac{(1)^2}{2}\cdot\,-1}\right)\cdot \left(3\cdot \frac{1^2}{2}\right)=\frac{3\sqrt{e}}{2\sqrt{2\cdot\pi}}$$
But my teacher says the answer is suppose to be $0$? What am I doing wrong? Side Note: I am new to Calculus. So an elaborate explanation will be appreciated.
Your way of applying the chain rule is wrong. Here's the right way: $$ \frac d {dx} e^{-x^2/2} = e^{-x^2/2} \cdot \frac d {dx} \left( \frac{-x^2} 2 \right) = e^{-x^2/2} \cdot(-x). $$