If $X$ is $ N(0,1)$, then what the distribution of $Y$, where $Y=X$ when $|X|\leq 1$ and $Y=-X$ when $|X| > 1$.
My attempt: when $|Y| \leq 1$, $F(y) = \Phi (y) $. When $|Y| > 1$, $F(y) = 1 - \Phi (y) $. Am I correct?
What bothers me is the fact that this distribution doesn't go to zero (one) as we move to the $- \infty$ ($ \infty$).
Since the distribution of $X$ is symmetric, $Y$ has exactly the same distribution as $X$.
Indeed: If we denote by $p$ the density of $X$, i.e.
$$p(x) = \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{x^2}{2} \right),$$
then $p(x)=p(-x)$. This implies
$$\mathbb{P}(X \in C) = \mathbb{P}(-X \in C) \tag{1}$$
for any Borel set $C$. Consequently,
$$\begin{align*} \mathbb{P}(Y \in B) &= \mathbb{P}(Y \in B \cap [-1,1]) + \mathbb{P}(Y \in B \backslash [-1,1]) \\ &\stackrel{\text{def $Y$}}{=} \mathbb{P}(X \in B \cap [-1,1]) + \mathbb{P}(-X \in B \backslash [-1,1]) \\ &\stackrel{(1)}{=} \mathbb{P}(X \in B \cap [-1,1]) + \mathbb{P}(X \in B \backslash [-1,1]) \\ &= \mathbb{P}(X \in B) \end{align*}$$
for any Borel set $B$; here we have applied $(1)$ for the Borel set $C := B \backslash [-1,1]$.