Let $\mathbb{R}$ denote the real line as a topological field, if $F$ is a proper subfield of $\mathbb{R}$, then $F$ must not be connected?
2025-04-20 03:32:24.1745119944
A proper subfield of $\mathbb{R}$ must not be connected?
79 Views Asked by David Chan https://math.techqa.club/user/david-chan/detail At
2
Let $x \in \mathbb{R}\setminus{F}$. We have $F = (F \cap (-\infty , x)) \cup (F \cap (x,\infty))$ and as $F$ contains $\mathbb{Z}$ the sets $F \cap (-\infty , x)$ and $F \cap (x,\infty)$ are not empty.