I am writing my Bachelors Thesis about Sard's Theorem and I was asking myself if there are any good applications of it or the direct consequences (Whitneys Embedding and Morse functions) in physics or geometric analysis for example. I found only one example from electrostatics online, some hints would be appriciated!
2026-02-22 23:37:06.1771803426
Applications of Sard's Theorem.
306 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in DIFFERENTIAL-TOPOLOGY
- Getting a self-homeomorphism of the cylinder from a self-homeomorphism of the circle
- what is Sierpiński topology?
- Bott and Tu exercise 6.5 - Reducing the structure group of a vector bundle to $O(n)$
- The regularity of intersection of a minimal surface and a surface of positive mean curvature?
- What's the regularity of the level set of a ''semi-nondegenerate" smooth function on closed manifold?
- Help me to prove related path component and open ball
- Poincarè duals in complex projective space and homotopy
- Hyperboloid is a manifold
- The graph of a smooth map is a manifold
- Prove that the sets in $\mathbb{R}^n$ which are both open and closed are $\emptyset$ and $\mathbb{R}^n$
Related Questions in GEOMETRIC-FUNCTIONAL-ANALYSIS
- Bound degrees of sparse random graphs
- How to vary a second order function with respect to the metric tensor?
- About non-separable Hilbert spaces
- Differentiability of Norms of $l_{\infty}$
- Realizing the Berkovich affine line as a union of Berkovich spectrums
- Definition of the Berkovich spectrum
- Distance between two functions in term of a third function
- Prove that $\forall t \in \mathbb R$ the set $f^{-1}(\{t\})$ is a hyperplane of $X$
- Hahn Banach Theorem implying existence of a nonzero linear functional taking 0 in a linear subspace
- Given a "composite" norm, what polygon describes its unit ball?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
There are more applications in differential topology than the ones you mention. Two main ones are the approximation theorems (of Whitney too), which you can see for example in [Introduction to Smooth Manifolds, John.M.Lee] or the Brouwer fixed point theorem, which you can see very short and nicely in [Topology from the Differential Viewpoint, John.W.Milnor].
There is also a nice topology differentiable theory called "degree theory" which studies the zeroes of continuous functions. The building of this theory widely uses the Sard theorem in order to prove several properties of an application called "degree". If you are interested, you can have a look at [Mapping Degree Theory, Enrique Outerelo, Jesús M. Ruiz]. With a quick search of the word "Sard" you can find plenty of applications. This theory also admits a generalization to Banach spaces, which might be something you are looking for, since this has many applications to EDP's. However, I do not know yet any good reference for this...
Sorry, I do not know about any more specific applications in physics, but I hope this helps!