How do I find a vector perpendicular to a vector like this: $$3\mathbf{i}+4\mathbf{j}-2\mathbf{k}?$$ Could anyone explain this to me, please?
I have a solution to this when I have $3\mathbf{i}+4\mathbf{j}$, but could not solve if I have $3$ components...
When I googled, I saw the direct solution but did not find a process or method to follow. Kindly let me know the way to do it. Thanks.
There exists an infinite number of vectors in 3 dimension that are perpendicular to a fixed one. They should only satisfy the following formula: $$(3\mathbf{i}+4\mathbf{j}-2\mathbf{k}) \cdot v=0$$
For finding all of them, just choose 2 perpendicular vectors, like $v_1=(4\mathbf{i}-3\mathbf{j})$ and $v_2=(2\mathbf{i}+3\mathbf{k})$ and any linear combination of them is also perpendicular to the original vector: $$v=((4a+2b)\mathbf{i}-3a\mathbf{j}+3b\mathbf{k}) \hspace{10 mm} a,b \in \mathbb{R}$$