I've always known how to get the center of mass of any region, but now i met a new question with a region bounded by a parametric curve and the question is to get its baricenter! My question is what changes in this case than the normal way of getting the baricenter? Because i dont have any idea now how to solve this question any help please?
The region is bounded by the parametric curve :
$ x(t)=cos(2\pi t)$
$ y(t)=t-t^3 $
$t\in [0,1] $
So we are looking for the baricenter (centroid) of the region enclosed by the curve $$ C:\left\{ \begin{gathered} 0 \leqslant t \leqslant 1 \hfill \\ x(t) = \cos \left( {2\pi t} \right) \hfill \\ y(t) = t - t^{\,3} \hfill \\ \end{gathered} \right. $$
Among the methods exposed in answering to Baricenter of a region bounded by a parametric curve we can in this case profitably choose the last.
Thus the area of the region enclosed by $C$ will be: $$ \begin{gathered} A = \frac{1} {2}\oint\limits_C {\left| {\,\begin{array}{*{20}c} x & y \\ {dx/dt} & {dy/dt} \\ \end{array} \,} \right|dt} = \frac{1} {2}\int_{t\, = \,0}^{\;1} {\left| {\,\begin{array}{*{20}c} {\cos \left( {2\pi t} \right)} & {t - t^{\,3} } \\ { - 2\pi \sin \left( {2\pi t} \right)} & {1 - 3t^{\,2} } \\ \end{array} \,} \right|dt} = \hfill \\ = \frac{1} {2}\int_{t\, = \,0}^{\;1} {\left( {\left( {1 - 3t^{\,2} } \right)\cos \left( {2\pi t} \right) + 2\pi \left( {t - t^{\,3} } \right)\sin \left( {2\pi t} \right)} \right)dt} = - \frac{3} {{2\,\pi ^{\,2} }} \hfill \\ \end{gathered} $$
which tells us that, for $t$ going from $0$ to $1$, we are tracing the curve clock-wise.
Then the baricenter $\mathbf{b}$ will be: $$ \begin{gathered} \mathbf{b} = \frac{1} {{3A}}\oint\limits_C {\mathbf{r}\left| {\,\begin{array}{*{20}c} x & y \\ {dx/dt} & {dy/dt} \\ \end{array} \,} \right|dt} = \hfill \\ = - 2\left( {\frac{\pi } {3}} \right)^{\,2} \int_{t\, = \,0}^{\;1} {\left( \begin{gathered} \cos \left( {2\pi t} \right) \\ t - t^{\,3} \\ \end{gathered} \right)\left( {\left( {1 - 3t^{\,2} } \right)\cos \left( {2\pi t} \right) + 2\pi \left( {t - t^{\,3} } \right)\sin \left( {2\pi t} \right)} \right)dt} = \hfill \\ = - 2\left( {\frac{\pi } {3}} \right)^{\,2} \left( \begin{gathered} - \frac{9} {{32\,\pi ^{\,2} }} \\ \frac{{9\,\pi ^{\,2} - 135}} {{4\,\pi ^{\,4} }} \\ \end{gathered} \right) = \left( \begin{gathered} \frac{1} {{16}} \\ \frac{{15}} {{2\,\pi ^{\,2} }} - \frac{1} {2} \\ \end{gathered} \right) \hfill \\ \end{gathered} $$
which matches with the answer above.