Bound on the difference of infimums

2k Views Asked by At

Suppose we have to non-negative functions $f$ and $g$ and we want to bound the difference of their infimums \begin{align} \left|\inf_{x\in \mathbb{R}}f(x)-\inf_{x\in \mathbb{R}}g(x)\right| \end{align} How can that be done?

Of course one can use triangle inequality to show that \begin{align} \left|\inf_{x\in \mathbb{R}}f(x)-\inf_{x\in \mathbb{R}}g(x)\right| \le \left|\inf_{x\in \mathbb{R}}f(x) \right|+\left|\inf_{x\in \mathbb{R}}g(x)\right|=\inf_{x\in \mathbb{R}}f(x) +\inf_{x\in \mathbb{R}}g(x) \end{align}

However, this bound is to loose.

I was wondering whether we can get a bound of the form

\begin{align} \left|\inf_{x\in \mathbb{R}}f(x)-\inf_{x\in \mathbb{R}}g(x)\right| \le \inf_{x\in \mathbb{R}}\left|f(x)-g(x)\right| \end{align}

If not, perhaps we can get a bound of the form

\begin{align} \left|\inf_{x\in \mathbb{R}}f(x)-\inf_{x\in \mathbb{R}}g(x)\right| \le K\inf_{x\in \mathbb{R}}\left|f(x)-g(x)\right| \end{align} where $K$ is some constant.