Choosing distinct balls to put into identical urns.

549 Views Asked by At

"There are 10 distinct balls that can be put into two identical urns such that no urn is empty. In how many ways can that be done?"

I know how to do this question when the urns are distinct (it's simply 9 choose 1), but when the urns are identical, the first urn containing only 1 ball and the second urn containing 9 balls, is the same thing as the first containing 9 balls and the second containing 1 ball. How do I take account for all the double counting?

Also, is there a more general formula that can account for any number n of identical urns?