As part of a preparatory course in the contest PUTNAM, I have to show $\sum_{k=0}^n {n \choose k} ^{2} = {2n \choose n}$. I know that I can use the identity $\sum_{k=0}^n {n \choose k} {n \choose n-k}$ with the generating function $\sum_{k=0}^\infty \binom nk x^k = (1+x)^n$.
However, I am not very aged (16 years), and generating functions are unknown to me. Someone would it be kind enough to describe me in detail how to do it?
You have, with the convention that $\binom{n}{k} = 0$ for $k > n$, $$ (1+x)^n = \sum_{k=0}^\infty \binom{n}{k} x^k $$ and $$ (1+x)^{2n} = \sum_{k=0}^\infty \binom{2n}{k} x^k. $$
But you also have $$\begin{align} (1+x)^{2n} &= (1+x)^n\cdot (1+x)^n = \left(\sum_{k=0}^\infty \binom{n}{k} x^k\right)\left(\sum_{k=0}^\infty \binom{n}{k} x^k\right) \\ &= \sum_{k=0}^\infty\sum_{\ell=0}^\infty \binom{n}{k}\binom{n}{\ell} x^kx^\ell = \sum_{k=0}^\infty\sum_{\ell=0}^\infty \binom{n}{k}\binom{n}{\ell} x^{k+\ell} \\ &= \sum_{k=0}^\infty\sum_{j=0}^k \binom{n}{k-j}\binom{n}{j} x^{k} \end{align}$$ By unicity of the coefficients of the generating function, $$ \sum_{k=0}^\infty \binom{2n}{k} x^k = \sum_{k=0}^\infty\sum_{j=0}^k \binom{n}{k-j}\binom{n}{j} x^{k} $$ implies $$ \binom{2n}{k} = \sum_{j=0}^k \binom{n}{k-j}\binom{n}{j} $$ for all $k$. In particular, for $k=n$, $$ \binom{2n}{n} = \sum_{j=0}^n \binom{n}{n-j}\binom{n}{j} = \sum_{j=0}^n \binom{n}{j}^2. $$