Computations of Blow up

1.3k Views Asked by At

Let $V=Z(y^5-x^3(x+1))$ be an irreducible variety in $\mathbb A^2$.

The partial derivatives of the equation $y^5-x^3(x+1)$ at the point $p=(0,0)$ are:

$ \frac{{\partial f}}{{\partial x}}=-3x^2-4x^3$, $ \frac{{\partial f}}{{\partial y}}=5y^4$, then $\frac{{\partial f}}{{\partial x}} | _p=0=\frac{{\partial f}}{{\partial y}} | _p$ i.e. $p$ is a singular point.

1) The equations of the blowing-up at $p$ in $\mathbb A^2\times\mathbb P^1$ are $xu=yt$ together with the morphism restriction $\pi:\Pi\to\mathbb A^2$ where $\Pi$ are given by the equation $xu=yt$ in $\mathbb A^2\times\mathbb P^1$.

2) In the affine chart $t=1$, we have

a) $y^5=x^3(x+1)$

b) $xu=y$.

Thus $Z(xu-y,y^5-x^3(x+1))=Z(y-xu,x)\cup Z(y-xu,x^2u^5-(x+1))$, and the exceptional curve is $Z(y-xu,x)=E$.

Then $E\cap V_1=\emptyset$ with $V_1=Z(y-xu,x^2u^5-(x+1))$

Thus look at the chart affine $u=1$

3) In the affine chart $u=1$, we have

a) $y^5=x^3(x+1)$

b) $x=yt$

In this case, $Z(xu-y,y^5-x^3(x+1))=Z(y,x-yt)\cup Z(y^2-t^3(yt+1),x-yt)$ and the exceptional curve is $E=Z(y,x-yt)$.

Then $E\cap V_2=\{(0,0,0)\}$ with $V_2=Z(y^2-t^3(yt+1),x-yt)$

Now calculate the matrix of partial derivatives of the equations of $V_2$; if $f=x-yt, g=y^2-t^3(yt+1)$

$\begin{bmatrix}{\frac{{\partial f}}{{\partial x}}=1}&{\frac{{\partial f}}{{\partial y}}=-t}&{\frac{{\partial f}}{{\partial t}}=-y}\\{\frac{{\partial f}}{{\partial x}}=0}&{\frac{{\partial f}}{{\partial y}}=2y-t^3}&{\frac{{\partial g}}{{\partial t}}=-4t^3y-3t^2} \end{bmatrix}|_{(0,0,0)}= \begin{bmatrix}{1}&{0}&{0}\\{0}&{0}&{0}\ \end{bmatrix}$

Then the variety $\widetilde{V}$ is singular in $\pi^{-1}(p)$.

Is correct?

I have to do blowing up of the variety $V_2=Z(y^2-t^3(yt+1),x-yt)$ but now on $\mathbb A^3\times\mathbb P^2$?

They could help me do this please.