Let $p=x^2+11x-1=1\pmod 5$ be a prime. Show that $x$ is a quintic residue $\pmod p$. It holds for $x<200$ and should hold for all such $x$. Any proof ideas? Thanks in advance.
2026-02-22 23:33:14.1771803194
Condition for Quintic Reciprocity
290 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ELEMENTARY-NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- How do I show that if $\boldsymbol{a_1 a_2 a_3\cdots a_n \mid k}$ then each variable divides $\boldsymbol k $?
- Using only the digits 2,3,9, how many six-digit numbers can be formed which are divisible by 6?
- Algebra Proof including relative primes.
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
- algebraic integers of $x^4 -10x^2 +1$
- What exactly is the definition of Carmichael numbers?
- Number of divisors 888,888.
Related Questions in QUADRATIC-RECIPROCITY
- Prove $\sum\limits_{j=1}^{p-1} j\left(\frac{j}{p}\right) = 0 $ for an odd prime $p$ with $p\equiv 1\text{ mod } 4$
- Elementary Number Theory: Quadratic Reciprocity
- Prove that there exists a number $x$ such that $x^2 \equiv 2$ (mod $p$) and $x^2 \equiv 3$ (mod $q$)
- Use quadratic reciprocity to decide whether the following congruences are solvable
- $3$ is a quadratic residue $\bmod p$ iff $ p \equiv \pm 1 \bmod12$
- Quadratic Reciprocity problem.. help!
- Find the set of primes $p$ which $6$ is a quadratic residue $\mod p$
- Prove that $\forall x\in\mathbb{N}\ \text{ there always exists a prime }p\equiv1 \pmod 6 \text{ s.t. }p|(2x)^2+3;$
- Diophantine equations for septic $(7$th$)$ power reciprocity
- Writting Legendre Symbol as an element of group cohomology of $\mathbb{Q}$
Related Questions in QUINTICS
- Confirmation of Proof: $f(x)= x^5 - x - 16$ has at most three real roots.
- Are there some methods to solve the quintic equation?
- Is $x^5-10x^3+20x= 8.58368$ solvable?
- Show: If some $x_i \neq x_1$ occurs as $\sigma(x_1)$ for a $\sigma \in$ Gal$ (E:F)$ then each $x_i\neq x_1$ occurs as $\sigma(x_1)$
- Quintic reciprocity conjecture
- Number of real roots of a quintic equation
- Equation with Galois group twisted $S_{3}$
- Factor $x^5-x+15$
- What do I need to learn, to understand Galois' solution of the quintic?
- Quintic polynomial with three real roots
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Here's a more general result . . .
Let $x$ be an integer, and let $n=x^2+11x-1$.
Claim:$\;$If $n$ is not a multiple of $5$, then $x$ is a $5$-th power, mod $n$.
Proof:
Let $a$ be an integer such that $5a\equiv 1\;(\text{mod}\;n)$, and let $w=a(x+3)$. \begin{align*} \text{Then}\;\;w^5&=\bigl(a(x+3)\bigr)^5\\[4pt] &\equiv (3125a^5)x\;(\text{mod}\;n)\;\;\;\text{[by polynomial long division]}\\[4pt] &\equiv \bigl((5a)^5\bigr)x\;(\text{mod}\;n)\\[4pt] &\equiv x\;(\text{mod}\;n)\\[4pt] \end{align*} which proves the claim.