Let C be a nonempty set in $R^n$ . Show that C is a convex cone if and only if $x_1, x_2 \in C $ implies that $\lambda_1\cdot x_1 + \lambda_2\cdot x_2 \in C $ for all $\lambda_1 ,\lambda_2 \geq0$.
2026-02-22 21:47:17.1771796837
Convex cone necessary and sufficient condition
353 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CONVEX-OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- Least Absolute Deviation (LAD) Line Fitting / Regression
- Check if $\phi$ is convex
- Transform LMI problem into different SDP form
- Can a linear matrix inequality constraint transform to second-order cone constraint(s)?
- Optimality conditions - necessary vs sufficient
- Minimization of a convex quadratic form
- Prove that the objective function of K-means is non convex
- How to solve a linear program without any given data?
- Distance between a point $x \in \mathbb R^2$ and $x_1^2+x_2^2 \le 4$
Related Questions in CONVEX-CONE
- Sufficient condition for strict minimality in infinite-dimensional spaces
- On finding a linear independent subset of vectors to describe a vector in a cone
- How to get explicit form of polar cone?
- Different forms of primal-dual second-order cone programs
- SOCP to SDP — geometry and intuition
- How to calculate set of equation of all the line in 3d, when a point on the line and angle between the line to find and a given line is provided?
- Pointed Norm Cone?
- Second-order cone constraints
- Closure of intersection of cone and affine space
- Is the set of non decreasing functions a "planar cone"?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
If $C$ is a convex cone use that $\lambda_i = \frac{\lambda_i} {\lambda_1 + \lambda_2} \cdot (\lambda_1 + \lambda_2)$, for $i=1,2$.