Does $$I=\int\limits_{-\infty}^{+\infty}\frac{2xdx}{x^2+1}$$ converge ? And should I use definition when calculating improper integrals ?
$I=\ln|x^2+1|_{-\infty}^{+\infty}=\infty-\infty$ ??
Let $x=-t$, we obtain $\displaystyle I=\int\limits_{+\infty}^{-\infty}\frac{2tdt}{t^2+1}=-I\implies I=0$
Could anybody explain the different of these solution, please ?
No, the integral diverges because if it did converge it would have also converged on subsets of the line, say -- $[0,\infty)$, but
$$\int_0^{\infty}\frac{2x}{x^2+1}\,dx=\lim_{M\to\infty}\int_0^{M}\frac{2x}{x^2+1}\,dx=\lim_{M\to\infty}\log(M^2+1)=\infty$$