Does this equation have any solutions for prime $q$ and $k > 1$, $k \equiv 1 \pmod 4$?
$$\sigma\left(\frac{1}{2}\sigma(q^k)\right) = 2q$$
Here $\sigma$ is the classical sum-of-divisors function. So for example, $$\sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.$$
There are no solutions for $k > 1$ and $k \equiv 1 \pmod{4}$. We have $\sigma(n) \geqslant n$, where the inequality is strict for $n > 1$, hence
$$\sigma\biggl(\frac{1}{2}\sigma(q^k)\biggr) \geqslant \frac{1}{2}\sigma(q^k) \geqslant \frac{1}{2}q^k,$$
so we would need
$$\frac{1}{2}q^{k-1} \leqslant 2.$$
But for $k \equiv 1 \pmod{4}$, we have $q^{k-1} \geqslant q^4 \geqslant 16$.