Not quite sure on how to find the Euler path in here. If there's even one.
2025-01-12 23:53:49.1736726029
Does this have a Euler circuit or a Euler path?
762 Views Asked by Ashley https://math.techqa.club/user/ashley/detail At
1
There are 1 best solutions below
Related Questions in GRAPH-THEORY
- Logic & Reasoning Question
- Category Theory compared with Meta-Grammars (or Hyper-Grammars) in Programming Languages
- Does this have a Euler circuit or a Euler path?
- cycle graph with $10$ v colouring with $11$
- Directed acyclic graph and adjacency matrix
- Why is there, for every language L in NP, a Turing machine with polynomial memory that also accepts L?
- How to prove vertex basis?
- Scheduling and coloring problem
- Chromatic polynomial of dual graphs
- Subdivision of nonplanar graph is nonplanar?
Related Questions in EULERIAN-PATH
- Does this have a Euler circuit or a Euler path?
- Non planar Petersen Proof using Euler
- Hamilton cycles for bipartite graphs
- Two questions about eulerian and hamiltonian graphs.
- Prove that an Eulerian graph is one in which all vertices have even degree?
- How do I explain the Königsberg Bridge problem to a child?
- Eulerian and Hamiltonian graphs with given number of vertices and edges
- A connected simple graph $G$ has $14$ vertices and $88$ edges. Prove $G$ is Hamiltonian, but not Eulerian.
- A connected simple graph G has 14 vertices and 88 edges. Prove G is not Eulerian.
- Does this graph have Hamiltonian path and/or Eulerian paths?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
There is a standard method for checking whether a simple connected graph has an Eulerian Circuit. A simple connected graph has an Eulerian circuit iff the degree of every vertex is even. Then, you can just go ahead and on such a small graph construct one. For example, ABFECDEGCBGFA.
However, all you need for an Eulerian path is that at least n-2 vertices have even degree where n is the number of vertices in your graph. Then , you start at a vertex with odd degree and end at one as well.