If $G$ is a nonplanar graph, does it follow that every subdivision of $G$ is nonplanar?
2025-01-12 23:44:07.1736725447
Subdivision of nonplanar graph is nonplanar?
1.2k Views Asked by user279302 https://math.techqa.club/user/user279302/detail At
1
There are 1 best solutions below
Related Questions in COMBINATORICS
- How many different games are there in bridge?
- Discrete mathematics, sets, increasing functions
- Number of necklaces of 16 beads with 8 red beads, 4 green beads and 4 yellow beads
- Logic & Reasoning Question
- Delannoy Paths and Pell Sequence Relation
- Combinatorics Problem - Clients using two seperate services
- There are few boxes labelled with $1,2,4,5,7,8,9$ respectively. How many ways to choose $5$ boxes and arranges the boxes in a row.
- Confused by book's given solution to basic combinatorial problem
- How many ways to write a number $n$ as the product of natural numbers $\geq 2$?
- Confused about how to solve basic combinatorial problem
Related Questions in GRAPH-THEORY
- Logic & Reasoning Question
- Category Theory compared with Meta-Grammars (or Hyper-Grammars) in Programming Languages
- Does this have a Euler circuit or a Euler path?
- cycle graph with $10$ v colouring with $11$
- Directed acyclic graph and adjacency matrix
- Why is there, for every language L in NP, a Turing machine with polynomial memory that also accepts L?
- How to prove vertex basis?
- Scheduling and coloring problem
- Chromatic polynomial of dual graphs
- Subdivision of nonplanar graph is nonplanar?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
Yes, because Kuratowski's Theorem states that a graph $G$ is nonplanar if and only if it contains a subgraph $H$ that is a subdivision of $K_{3,3}$ or $K_5$.
If $G$ is nonplanar, let $H$ be such a subgraph. A subdivision $G'$ of $G$ induces a subdivision $H'$ of $H$; since $H$ is a subdivision of either $K_{3,3}$ or $K_5$, so is $H'$, and so $G'$ is nonplanar.
There is an alternative (basically identical) proof using Wagner's theorem.
A third, more direct proof: If $G' = (V',E')$ is a subdivision of $G = (V,E)$, and $G'$ is planar, then draw $G'$ without intersecting edges. Now remove the vertices in $V' \setminus V$ but keep the edges. Now you have a drawing of $G$ without intersecting edges, so $G$ is planar.