I have been trying to understand why dual of a cone is closed, no matter the cone is closed or not. I know the proof is 'It is because dual cone is an intersection of closed halfspaces.'. I just do not understand how it is linked to the definition of the dual cone.
2025-01-13 06:02:35.1736748155
dual cone is closed
1.8k Views Asked by Haesol https://math.techqa.club/user/haesol/detail At
1
There are 1 best solutions below
Related Questions in DUAL-CONE
- Dual Cone Containment
- Examples of tangent cone
- What is the tangent cone of the nonnegative orthant?
- Torus Action on Fan of Variety
- Any proper face is contained in some facet.
- Realizing $\mathbf{C}$ as 1-dimensional normal toric variety
- Subset relation between convex cone and its dual
- Is the union of dual cone and polar cone of a convex cone is a vector space?
- dual cone is closed
- Dual cone and sum of closed cones
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
Dua cone of $C$ is defined to be
$$C^*=\left\{ y \in X^*: \langle y,x\rangle \geq 0 , \forall x \in C \right\}$$
For each $x$, $\left\{y :\langle y,x \rangle \geq 0\right\}$ is a closed half space. Hence $C^*$ is an intersection of closed halfspaces.