Consider the planar nonlinear system,
$x' = a − x − \frac{4xy}{1 + x^2}$
$y' = bx(1− \frac{ y}{1 + x^2})$
where $x$ and $y$ represent the concentrations of $I-$ (iodine ions) and $ClO_2-$ (chlorine dioxide ions), respectively, and $a$ and $b$ are positive parameters.
Find all equilibrium points for this system and linearize the system at your equilibria and determine the type of each equilibrium.
Setting $y'=x' = 0$ gives $x \neq 0$ since $a>0$ and so $1+x^2 = y$. Substituting into the other equation gives $x = {a \over 5}$ and hence $y = 1+({a \over 5})^2$.
If we let $f((x,y)) = (a-x(1+{4y \over 1+x^2}), bx((1-{y \over 1+x^2}) )^T $, then $Df(({a \over 5}, 1+({a \over 5})^2)) = {1 \over a^2 + 25} \begin{bmatrix} 3 a^2 -125 & -20 a \\ 2 a^2 b & -5 ab \end{bmatrix}$.
Following Chris' remarks: $\det Df(({a \over 5}, 1+({a \over 5})^2)) = {25 ab \over a^2+25 }$, and since this is strictly positive, determination of stability reduces to examining the sign of $\operatorname{tr} Df(({a \over 5}, 1+({a \over 5})^2))$.
We have $\operatorname{tr} Df(({a \over 5}, 1+({a \over 5})^2)) = { 3 a^2 - 5 a b -125\over 1+({a \over 5})^2 } $.
Hence we see that if $b > {3 \over 5} a -{25 \over a}$, the system is stable, if $b < {3 \over 5} a -{25 \over a}$, the system has an unstable mode and if equal, the eigenvalues are inconclusive in determining the stability of the original system.
In the following graph, $b$ is on the vertical axis and the stable region (that is, pairs $(a,b)$ for which the above equilibrium is stable) is above the blue line.