Show whether the following function is radially bounded or radially unbounded: $$ V(x)=\frac{(x_1+x_2)^2}{1+(x_1+x_2)^2}+(x_1-x_2)^2 $$
2025-01-12 23:27:43.1736724463
Radially bounded or radially unbounded
3.2k Views Asked by MA HH https://math.techqa.club/user/ma-hh/detail At
1
There are 1 best solutions below
Related Questions in CALCULUS
- Derivative of Lambert W function.
- how to use epsilion-delta limit definition to answer the following question?
- Finding the equation of a Normal line
- How to Integrate the Differential Equation for the Pendulum Problem
- Help in finding error in derivative quotient rule
- How to solve the following parabolic pde?
- Finding inflection point
- How to find the absolute maximum of $f(x) = (\sin 2\theta)^2 (1+\cos 2\theta)$ for $0 \le \theta \le \frac{\pi}2$?
- Utility Maximization with a transformed min function
- Interpreting function notation?
Related Questions in REAL-ANALYSIS
- Proving whether the limit of a sequence will always converge to 0?
- Limit of $(5n^2+2n)/(n^2-3)$ using limit definition
- If $\inf f = f(a)$, then $\exists b,c$, $f(b) = f(c)$
- Trying to prove if $S$ is a subset of $R$, every adherent point to $S$ is the limit of a sequence in $S$
- ODE existence of specific solutions
- equivalent definitions of weak topology on a topological vector space
- Bounded derivative implies uniform continuity on an open interval
- Inf and Sup question
- how to prove sup(A) where A={(n+1)/n|n∈N}?
- how to use epsilion-delta limit definition to answer the following question?
Related Questions in NONLINEAR-SYSTEM
- Radially bounded or radially unbounded
- Getting independent equations by differentiation
- A system of 1st order nonlinear ODEs with 3 varibles.
- Solving a special system of N+1 equations
- Upper bound on a sequence after a finite number of steps
- Solving for the radius of the Earth based on distance to horizon problem
- Number of solutions for an underdetermined system of nonlinear equations
- Equilibrium Points and Linearization
- Linearisation of nonlinear system of equations
- Analyzing Dynamical System
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
I this case, $V(x)$ is not radially unbounded (therefore radially bounded). Take each term individually.
Looking at the first term, $\frac{(x_1+x_2)^2}{1+(x_1+x_2)^2}$, this certainly does not go to infinity as the norm of $x$ goes to infinity. In fact, it actually goes to $1$.
Looking at the second term, $(x_1-x_2)^2$, it is not radially unbounded because the term does not go to infinity along the line $x_1 = x_2$. This wikipedia article covers this exact same case https://en.wikipedia.org/wiki/Radially_unbounded_function
Since neither term is radially unbounded, $V$ is radially bounded.