Can we find an example of a function $g\in {\rm L}^1(0,1)$ which satisfies: for arbitrary $1<p<+\infty$ and for arbitrary measurable subeset $A\subseteq (0,1)$ such that $\lambda(A)>0$ it holds that $g\notin {\rm L}^p(A)$? I am aware of the fact that we can construct ${\rm L}^1(0,1)$-functions which are nowhere bounded, i.e., $g\notin {\rm L}^{\infty}(A)$ for arbitrary measurable subeset $A\subseteq (0,1)$ such that $\lambda(A)>0$ (I can't recall the actual textbook where I read it), but I do not know if we can violate $p$-integrability everywhere and for every $p>1$.
2026-02-22 19:05:14.1771787114
Example of integrable function which is nowhere $p$-integrable
96 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in LEBESGUE-MEASURE
- A sequence of absolutely continuous functions whose derivatives converge to $0$ a.e
- property of Lebesgue measure involving small intervals
- Is $L^p(\Omega)$ separable over Lebesgue measure.
- Lebesgue measure and limit of the integral.
- uncountable families of measurable sets, in particular balls
- Joint CDF of $X, Y$ dependent on $X$
- Show that $ Tf $ is continuous and measurable on a Hilbert space $H=L_2((0,\infty))$
- True or False Question on Outer measure.
- Which of the following is an outer measure?
- Prove an assertion for a measure $\mu$ with $\mu (A+h)=\mu (A)$
Related Questions in LP-SPACES
- Absolutely continuous functions are dense in $L^1$
- Understanding the essential range
- Problem 1.70 of Megginson's "An Introduction to Banach Space Theory"
- Showing a sequence is in $\ell^1$
- How to conclude that $\ell_\infty$ is not separable from this exercise?
- Calculating the gradient in $L^p$ space when $0<p<1$ and the uderlying set is discrete and finite
- $f_{n} \in L^{p}(X),$ such that $\lVert f_{n}-f_{n+1}\rVert_{p} \leq \frac{1}{n^2}$. Prove $f_{n}$ converges a.e.
- Find a sequence converging in distribution but not weakly
- Elementary use of Hölder inequality
- Identify $\operatorname{co}(\{e_n:n\in\mathbb N\})$ and $\overline{\operatorname{co}}(\{e_n : n\in\mathbb N\})$ in $c_0$ and $\ell^p$
Related Questions in SINGULARITY
- Homogeneous quadratic in $n$ variables has nonzero singular point iff associated symmetric matrix has zero determinant.
- How do I show with Laurent Series Expansion that $1/z$ has a simple pole for $z=z_0=0$?
- Order of Poles of $1/\cos(1/z)$
- Let $f(x, y) = y^2 - g(x) \in \mathbb{R}[x, y]$. Show that $(0, 0)$ is a singular point if and only if $g(x) = x^2(x-a)$.
- Classification of singularities of $\sin\left( \frac{1}{\sin(\frac{1}{z})}\right)$
- $z=0$ is a removal singularity of $f$. (T/F)
- Laurent expansion and singularities of $\frac{1-\cos(z)}{e^{2iz}-1}$
- Proving $0$ is a removable singularity
- solve $XA = B$ in MATLAB
- Why is $ u=\log(\sqrt{x^2+y^2})$ not harmonic for $x^2 + y^2 <1$?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
No, the statement you say you read is false. (I suspect that what you actually read was that in some context there exists $f\in L^1$ such that there is no non-empty open set $A$ on which $f$ is bounded...)
(Of course if $\mu(X)=0$ there are no sets of positive measure to begin with, hence the restriction.)
Proof: For $n=1,2\dots$ let $$A_n=\{x:|f(x)|\le n\}.$$We need to show that some $A_n$ has positive measure. If on the other hand $\mu(A_n)=0$ for every $n$ then for every $n$ we have $|f|>n$ almost everywhere, so $$\int|f|\,d\mu>n\mu(X).$$Hence $\int|f|=\infty$, contradiction.
There is an example of the sort you ask about for open sets instead of measurable sets. First concoct $g\in L^1(\Bbb R)$ such that for every $\delta>0$ and every $p>1$ you have $$\int_{-\delta}^\delta|g|^p=\infty.$$Now say $(x_n)$ is a countable dense set and let $$f(x)=\sum\frac1{n^2}g(x-x_n).$$Then $\int_A|f|^p=\infty$ for any non-empty open set $A$.