Given the function :
$f(x)=x^2+x|x-1|-1$ such that $x$ is a real number .
Show that there is a $k\in \mathbb{R}$ for all $x\in \mathbb{R}$ such that:
$|x-1|<1 \implies |f(x)-f(1)|<k|x-1|$
I tried cases of $x$ :
If $x>1$ then $f(x)=(2x+1)(x-1)$
If $x<1$ then $f(x)=x-1$
And so the $k=2x+1$ ?
And then conclude that for all positive $\varepsilon$ there is a positive $\alpha$ for all real $x$ Such that:
$|x-1|\lt1 \implies |f(x)-f(1)|\lt\varepsilon$
If $x \in \mathbb{R}$, then $$ |f(x) - f(1)| = |x^{2}+x|x-1|-1| \leq |x-1|(|x| + |x+1|); $$ if $|x-1| < 1$, then $0 < x < 2$, so $$ |x-1|(|x| + |x+1|) < 5|x-1|; $$ take $k := 5$.