How would I determine all values of n in ϕ(n) = x for any value of x where ϕ is Euler's totient function? (and -1 if x is not a totient). Is there a simple formula for this? Or is this a lot more complicated than I think this is? Simply trying every number from x + 1 to the upper limit is too inefficient. I will be using numbers up to 1,000,000,000,000, so efficiency is key here.
2025-01-13 02:19:00.1736734740
Find all values of N that satisfy ϕ(N) = x for any given x value
233 Views Asked by James McDowell https://math.techqa.club/user/james-mcdowell/detail At
1
There are 1 best solutions below
Related Questions in ELEMENTARY-NUMBER-THEORY
- Fermats little theorem, $p$ is not a prime number
- Solve $17x\equiv31\pmod{109}$
- Confusion about natural numbers and leading zero(s)
- State machine scenario: finding invariant
- Finding $\left\lfloor\frac{a}{2} \right\rfloor \mod p$ knowing $a \mod p$ and $a \mod 2$?
- What is the largest $n$-digit number which is also an exact $n$th power?
- Picking random integers $a_i$ until the $\gcd(a_1,a_2,\dots,a_n)$ is 1
- Prove that $c^n>a^n+b^n$ for $n>2$
- Is the odd part of even almost perfect numbers (other than the powers of two) not almost perfect?
- Show that this sum is an integer.
Related Questions in DISCRETE-MATHEMATICS
- Prove that all solutions to the equation x² = x +1 are irrational
- which of the following statements about a group are true?
- Discrete mathematics, sets, increasing functions
- Give a reason for each step in the following argument
- Logic & Reasoning Question
- $\prod_{i=1}^n (i+n)$ - To what does it converges?
- Help with set builder notation
- Discrete mathematics Sets Relations
- Logical Rules Proof
- $\sum_{k=0}^n {n \choose k} ^{2} = {2n \choose n}$ - Generating function $\sum_{k=0}^\infty \binom nk x^k = (1+x)^n$.
Related Questions in TOTIENT-FUNCTION
- Use Euler's Theorem to Find a Number $x$ between $0$ and $28$ such that $x^{85} \equiv 6 \pmod{35}$
- How many integers $m$ such that Euler Totient Function $\varphi(m)$ = a given integer?
- Find all values of N that satisfy ϕ(N) = x for any given x value
- A limit involving $\phi$
- Proving the Converse of Euler's Totient Theorem
- Mobius function vanishes over sum of totient numbers
- Have i understood Fermat little theorem and Euler's theorem correctly?
- How to find reminder of $m^{x}$ divided by $n$ using Euler's and Fermat's little theorem
- What is the remainder of $31^{2008}$ divided by $36$?
- Number Theory: Find all solutions of $\phi(n)=16$ and $\phi(n)=24$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
The paper below proves that it is very unlikely that this problem can be solved efficiently: