Let $x,y\in \mathbb{R}$ such that $$\sqrt{\left(\frac{x+y}{2}\right)^3}+\sqrt{\left(\frac{x-y}{2}\right)^3}=27$$. Find the minimize value of $x$.
[Edit by Michael Rozenberg] I tried to use AM-GM to retire the radical but failed: $$27=\sqrt{\left(\frac{x+y}{2}\right)^3}+\sqrt{\left(\frac{x-y}{2}\right)^3}\geq2\sqrt[4]{\left(\frac{x+y}{2}\right)^3\left(\frac{x-y}{2}\right)^3}=$$ $$=2\sqrt[4]{\frac{(x^2-y^2)^3}{64}}=\sqrt[4]{\frac{(x^2-y^2)^3}{4}}.$$ Help me
For any two real numbers $a$ and $b$, we have
$$(a^2+b^2)^3 \geq (a^3+b^3)^2$$
because
$$(a^2+b^2)^3 - (a^3+b^3)^2 = a^2b^2[2a^2+2b^2+(a-b)^2]\geq 0$$
Setting $a=\sqrt{\frac{x+y}{2}}$ and $b=\sqrt{\frac{x-y}{2}}$, we get:
$$\left[\sqrt{\left(\frac{x+y}{2}\right)^3}+\sqrt{\left(\frac{x-y}{2}\right)^3}\right]^2 \leq \left(\frac{x+y}{2}+\frac{x-y}{2}\right)^3=x^3$$
Therefore $x^3 \geq 27^2\Rightarrow x\geq 9$. This minimum is attained when $x=y=9$.