I am supposed to find the local extreme of function $z=xy$ on set $x^2+y^2=1$.
I used substitution:$ x=\cos \theta ,y=\sin \theta $, where $\theta \in \left [ 0,2\pi \right ]$.
So:
$z=\cos \theta \sin \theta \iff$ $z=\frac{\sin 2\theta }{2}$, but I do not know, how to continue.
Can anyone help me, please?
Let $\phi=2\theta$, so we're looking for the extremes of $z=\dfrac{\sin2\theta}2=\dfrac{\sin\phi}2.$
Since $-1\le \sin\phi\le 1$, the extremes occur when $\sin\phi=\sin2\theta=\pm1$; i.e., $z=\pm\dfrac12$.
Another approach would be to look for extremes of $z^2=x^2(1-x^2)=x^2-x^4;$
the derivative is zero when $2x-4x^3=2x(1-2x^2)=0$.
Another approach uses a Lagrange multiplier:
$xy-\lambda(x^2+y^2-1)$
$y-2\lambda x=0, x-2\lambda y=0, x^2+y^2=1$
$y=2\lambda x=4\lambda^2y$ so $\lambda^2=\frac14$ so $\lambda=\pm\frac12$ so $y=\pm x$ and $x^2+y^2=1...$