I am trying to solve the following question: Let
$X_1,X_2,...$ i.i.d with $F(x) = P(X_i < x),~\\M_n := \max_{1\le{i}\le{n}}\ X_i,~\ $ $F(x_0) = 1$ and $F(x)<1$ for all x
Given; $\lim_{x\rightarrow x_0}\ (x_0-x)^{-\alpha}(1-F(x)) = b $. show that $$P((bn)^{\frac{1}{\alpha}}(M_n-x_0)<x) \rightarrow \mathbb{1}_{[x<\ 0\ ]}e^{-(-x)^\alpha}+\mathbb{1}_{[x\ge\ 0\ ]}.$$
My trial; $$P((bn)^{\frac{1}{\alpha}}(M_n-x_0)<x) = P(M_n < \frac{x}{(bn)^\frac{1}{\alpha}}+x_0) = (P(X_1 < \frac{x}{(bn)^\frac{1}{\alpha}}+x_0))^n \\ let \ x \rightarrow \ x_0 \ \ then\ (1-F(\frac{x}{(bn)^\frac{1}{\alpha}}+x_0))^n \rightarrow (b[x_0-(\frac{x}{(bn)^\frac{1}{\alpha}}+x_0)]^\alpha)\ = (\frac{(-x)^\alpha}{n})^n$$
I don't know how to proceed from here, help appreciated, thank you.
As the expression of the limit suggest, you have to distinguish the cases $x<0$ and $x\geqslant 0$. For $x\geqslant 0$, $F\left(\frac{x}{(bn)^{1/\alpha}}+x_0\right)=1$ for all $n$. For $x\lt 0$, let $x_n=\frac{x}{(bn)^{1/\alpha}}+x_0$. Then by assumption, we know that $$ (x_0-x_n)^{-\alpha}(1-F(x_n))\to b $$ or in other words, $$ (x_0-x_n)^{-\alpha}(1-F(x_n))= b+\epsilon_n, \epsilon_n\to 0. $$ Therefore, $(1-F(x_n))^n=(x-x_0)^{n\alpha}(b+\epsilon_n)^n$. Rearrange the expression and use the fact that for all $t$, $$ \left(1+\frac tn +\frac{\epsilon_n}n\right)^n\to e^t. $$