Two numbers have $HCF=100$ and $LCM=3000$. Find the smaller of the two numbers if both numbers are more than $100$.
2026-02-22 23:28:11.1771802891
Finding smaller number of two numbers using HCF and LCM
48 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GCD-AND-LCM
- How do I show that if $\boldsymbol{a_1 a_2 a_3\cdots a_n \mid k}$ then each variable divides $\boldsymbol k $?
- GCD of common divisors in integral domain
- How do I solve this difficult gcd question?
- Fractions of the form $\frac{a}{k}\cdot\frac{b}{k}\cdot\frac{c}{k}\cdots=\frac{n}{k}$
- Why can't be a number the gcd of two numbers?
- Prove that if $\gcd(m, n) > 1$, then there do not exist integers $x, y$ so that $mx + ny = 1$.
- Least number of cuts to share sausages equally
- For $f \in \mathbb{Z}[x]$ , $\deg(\gcd_{\mathbb{Z}_q}(f, x^p - 1)) \geq \deg(\gcd_{\mathbb{Q}}(f, x^p - 1))$
- GCD as linear combination of two numbers
- A question regarding greatest common divisor
Related Questions in LEAST-COMMON-MULTIPLE
- Least number of cuts to share sausages equally
- LCM of 3 digit number
- Minimize LCM / GCD
- Determine the value given conditions
- How to find the unknown number while only LCM is given
- How might I prove that LCM$(m) \geq 2^m$?
- GCF and LCM Math Help
- Solve $1+a^c+b^c=\text{lcm}(a^c,b^c)$
- Proof of LCM property.
- If $k$ and $\ell$ are positive 4-digit integers such that $\gcd(k,\ell)=3$, what is the smallest possible value for $\mathop{\text{lcm}}[k,\ell]$?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The product is $300,000$ and both numbers are divisible by $100$ and can be divided by $3,000.$ Let the numbers be $100m$ and $100n,$ $m$ and $n$ being integers then by product $mn = 30$ and hence $m,n$ can be $1,30; 2,15; 3,10; 5,6$ but the first case is not possible hence smaller number can be $200, 300, 500$