Can material implication be defined from strict implication? More precisely, is there a modal logic with primitive symbols for negation and strict implication only, such that material implication can be defined and axioms for material implication and negation are then derivable as theorems? The rules of inference of classical logic should also be derivable.
2026-02-22 16:19:46.1771777186
From modal to classical logic
118 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LOGIC
- Theorems in MK would imply theorems in ZFC
- What is (mathematically) minimal computer architecture to run any software
- What formula proved in MK or Godel Incompleteness theorem
- Determine the truth value and validity of the propositions given
- Is this a commonly known paradox?
- Help with Propositional Logic Proof
- Symbol for assignment of a truth-value?
- Find the truth value of... empty set?
- Do I need the axiom of choice to prove this statement?
- Prove that any truth function $f$ can be represented by a formula $φ$ in cnf by negating a formula in dnf
Related Questions in MODAL-LOGIC
- Counter examples in modal logic
- Quantified Modal Logic - How does an existence predicate help with a fixed-domain model?
- Modal logic with MLp as an axiom
- Maximal Consistent Sets of wff
- $\sf K$-proof of $(\Box p \land \Diamond q) \rightarrow \Diamond (p\land q)$
- Problem set of modal logic with solution
- Determine a modal logic formula which a connective that is not valid but is true
- What is the Upper-Bound for a Kripke Model in Normal Modal Logics?
- Understanding The First Axiom Of Gödel's Ontological Proof
- Modal operators are not extensional
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Let's try at least to sharpen things up and to get a clearly framed question.
Strict implication of course comes in various grades (corresponding to the strength of various modal systems). Let's consider the strict implication conditional of S5. Now it is known that the pure strict implication fragment of S5 is axiomatised by taking as axioms instances of the schemas
where $S$ is a strict conditional $C \Rightarrow D$, and the rule of inference is strict modus ponens.
We can add to this the following negation rules
and (if I recall correctly) you then get the strict implication/negation fragment of S5.
So now we have something on the table to play with, and a clear question to ask. Is there a wff $A \to C$ definable in terms of $A, C, \sim, \Rightarrow$ for which the standard classical laws of the material conditional and negation together are then provable in the implication/negation fragment of S5? (If not provable in this strong system, they won't be provable in a weaker system corresponding to a weaker notion of strict implication for S3, S4 etc.)
E.g. can we define an arrow for which Peirce's Law is provable in this system.
That's a clear question, at least. My conjecture is: no!