The problem statement is:
$$\int_0^{\infty}\frac{x^α}{x^3+1}dx$$ for α in the range −1<α<2.
$$\huge \frac{2\pi i}{1-e^{\frac{i2\pi (\alpha+1)}{3}}} \frac {e^{\frac{i \pi \alpha}{3}}} { 3e^{\frac{2\pi i}{3}}}$$
$\alpha$ is some constant between -1 and 2.
Thanks,
Multiply by $\frac{e^{\frac{-i\pi(a+1)}3}}{e^{\frac{-i\pi(a+1)}3}}$: $$ \begin{align} \frac{2\pi i}{1-e^{\frac{i2\pi(a+1)}3}}\frac{e^{\frac{i\pi a}3}} {3e^{\frac{2\pi i}3}} &=\frac{2\pi i}{e^{-\frac{i\pi(a+1)}3}-e^{\frac{i\pi(a+1)}3}}\frac{e^{-\frac{i\pi}3}} {3e^{\frac{2\pi i}3}}\\[6pt] &=\frac{\frac\pi3}{-\sin\left(\frac\pi3(a+1)\right)}e^{-i\pi}\\[6pt] &=\frac{\frac\pi3}{\sin\left(\frac\pi3(a+1)\right)} \end{align} $$ since $\sin(x)=\frac{e^{ix}-e^{-ix}}{2i}$.