Prove that $x\delta(x) = 0$ and $xP(\frac{1}{x})=1$
Here $P$ means the Cauchy principal value.
How can I start this? And if I prove the second, will $xP(\frac{1}{|x|})=1$ also follow?
Definition: $P\left(\frac{1}{|x|},f\right) = \int_{|x|<1}\frac{f(x)-f(0)}{|x|}dx + \int_{|x|>1}\frac{f(x)}{|x|}dx$
We have for any test function $f$,
$$\begin{align} \int_{-\infty}^\infty f(x)(x\delta(x))\,dx&=\int_{-\infty}^\infty (xf(x))\delta(x)\,dx\\\\ &=\left.\left(xf(x)\right)\right|_{x=0}\\\\ &=0 \end{align}$$
Therefore, in the sense of Generalized Functions $x\delta(x)=0$.