If $\dfrac{2^x}{\sqrt{x}}=n$ where $x\rightarrow\infty$ as $n\rightarrow\infty$, how does $x$ grow asymptotically in terms of $n$?
We know that it grows faster than $\log n$, because $\dfrac{2^{\log n}}{\sqrt{\log n}}=\dfrac{n}{\sqrt{\log n}}<n$. But it grows slower than $(\log n)^2$, because $\dfrac{2^{(\log n)^2}}{\sqrt{(\log n)^2}}=\dfrac{n^{\log n}}{\log n}>n$.
Taking logs (base 2) gives
$$ \lg n = x - \frac{\lg x}{2}, \tag{1} $$
and, dividing through by $x$,
$$ \frac{\lg n}{x} = 1 - \frac{\lg x}{2x}. $$
We observe that $x \to \infty$ as $n \to \infty$, so $(\lg x)/(2x) \to 0$ as $n \to \infty$, and thus
$$ \lim_{n \to \infty} \frac{\lg n}{x} = 1. $$
Equivalently,
$$ x \sim \lg n \qquad \text{as } n \to \infty. $$