Help to prove this Inequality:
If x,y,z are postive real numbers then:
$\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}+\dfrac{z^3}{z^2+x^2} \geqslant \dfrac{x+y+z}{2}$
I tied to use analytic method with convex function but no result:
Since $f(x)=\frac{1}{x}$ is a convex function, by Jensen we obtain: $$\frac{1}{x+y+z}\sum_{cyc}\frac{x^3}{x^2+y^2}=\sum_{cyc}\left(\frac{x}{x+y+z}\cdot\frac{1}{\frac{x^2+y^2}{x^2}}\right)\geq$$ $$\geq\frac{1}{\sum\limits_{cyc}\left(\frac{x}{x+y+z}\cdot\frac{x^2+y^2}{x^2}\right)}=\frac{x+y+z}{\sum\limits_{cyc}\left(x+\frac{y^2}{x}\right)}.$$ Thus, it's enough to prove that $$\frac{x+y+z}{\sum\limits_{cyc}\left(x+\frac{y^2}{x}\right)}\geq\frac{1}{2}$$ or $$x+y+z\geq\sum_{cyc}\frac{y^2}{x},$$ which is wrong.
thanks
$$\sum_{cyc}\frac{x^3}{x^2+y^2}-\frac{x+y+z}{2}=\sum_{cyc}\left(\frac{x^3}{x^2+y^2}-\frac{x}{2}\right)=\sum_{cyc}\frac{x^3-xy^2}{2(x^2+y^2)}=$$ $$=\sum_{cyc}\left(\frac{x^3-xy^2}{2(x^2+y^2)}-\frac{x-y}{2}\right)=\sum_{cyc}\frac{y(x-y)^2}{2(x^2+y^2)}\geq0.$$