Consider the function $$g(x,y,z)= \left(\frac {x^3} {2(z^2 +1)(x^4 +4y^6)^2},\frac {3y^5} {(z^2 +1)(x^4 +4y^6)^2}, \frac z {4(z^2 +1)2(x^4 +4y^6)}\right)$$
defined on the set $U:= \{(x,y,z) \in R^3:(x,y)\not=(0,0)\}$
Calculate $\int_γ g$, where $γ$ is the oriented piece wise $C_1$ curve parametrizing the boundary of the γ square $[−1, 1]\times[−1, 1]\times 0$. The orientation is counter-clockwise, following the right-hand rule.
So what I have done is proven that the function is irrotational or curl-free. But this does not guarantees conservativeness so i am not sure how to proceed; in addition, how can i write down the function of the boundary? I am a little confused about only three points for a square.
Given the vector field $\mathbf{F} : \mathcal{D} \to \mathbb{R}^3$ of law:
$$ \mathbf{F}(x,\,y,\,z) := \left\{ \frac{x^3}{2\left(x^4+4\,y^6\right)^2\left(z^2+1\right)}, \; \frac{3\,y^5}{\left(x^4+4\,y^6\right)^2\left(z^2+1\right)}, \; \frac{z}{4\left(x^4+4\,y^6\right)\left(z^2+1\right)^2} \right\} $$
of natural domain:
$$ \mathcal{D} = \left\{ (x,\,y,\,z) \in \mathbb{R}^3 : x^4 + 4\,y^6 \ne 0 \right\} $$
and the support curve $\gamma := \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$, naturally parameterizable as follows:
$$ \begin{aligned} & \gamma_1 : (x,\,y,\,z) = \mathbf{r}_1(t) := (t,\,-1,\,0)\,, \; \; \; \text{for} \; t \in [-1,\,1]\,; \\ & \gamma_2 : (x,\,y,\,z) = \mathbf{r}_2(t) := (1,\,t,\,0)\,, \; \; \; \; \; \, \text{for} \; t \in [-1,\,1]\,; \\ & \gamma_3 : (x,\,y,\,z) = \mathbf{r}_3(t) := (t,\,1,\,0)\,, \; \; \; \; \; \, \text{for} \; t \in [-1,\,1]\,; \\ & \gamma_4 : (x,\,y,\,z) = \mathbf{r}_4(t) := (-1,\,t,\,0)\,, \; \; \; \text{for} \; t \in [-1,\,1]\,; \\ \end{aligned} $$
by definition, the work $\mathcal{W}$ of $\mathbf{F}$ along $\gamma$ is equal to:
$$ \small \begin{aligned} \mathcal{W}_{\gamma}(\mathbf{F}) := \int\limits_{\gamma^+} \mathbf{F} \cdot \text{d}\mathbf{r} & = \sum_{i = 1}^4 \int\limits_{\gamma_i^+} \mathbf{F}(\mathbf{r}_i(t)) \cdot \mathbf{\dot{r}}_i(t)\,\text{d}t \\ & = \int_{-1}^1 \frac{t^3}{2\left(t^4+4\right)^2}\,\text{d}t + \int_{-1}^1 \frac{3\,t^5}{\left(4\,t^6+1\right)^2}\,\text{d}t + \int_1^{-1} \frac{t^3}{2\left(t^4+4\right)^2}\,\text{d}t + \int_1^{-1} \frac{3\,t^5}{\left(4\,t^6+1\right)^2}\,\text{d}t \\ & = \int_{-1}^1 \frac{t^3}{2\left(t^4+4\right)^2}\,\text{d}t + \int_{-1}^1 \frac{3\,t^5}{\left(4\,t^6+1\right)^2}\,\text{d}t - \int_{-1}^1 \frac{t^3}{2\left(t^4+4\right)^2}\,\text{d}t - \int_{-1}^1 \frac{3\,t^5}{\left(4\,t^6+1\right)^2}\,\text{d}t \\ & = 0\,. \end{aligned} $$
That's all.