Is there an explicit formula for the inverse Fourier transfrom of the following function $$f(\xi)=\frac{1}{(1+\xi^2)^\alpha}\,,$$ where $\xi\in\mathbb{R}$ and $\alpha>1$?
2026-02-22 19:48:59.1771789739
Inverse Fourier transform of a specific function
86 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in COMPLEX-ANALYSIS
- Minkowski functional of balanced domain with smooth boundary
- limit points at infinity
- conformal mapping and rational function
- orientation of circle in complex plane
- If $u+v = \frac{2 \sin 2x}{e^{2y}+e^{-2y}-2 \cos 2x}$ then find corresponding analytical function $f(z)=u+iv$
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- order of zero of modular form from it's expansion at infinity
- How to get to $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz =n_0-n_p$ from Cauchy's residue theorem?
- If $g(z)$ is analytic function, and $g(z)=O(|z|)$ and g(z) is never zero then show that g(z) is constant.
- Radius of convergence of Taylor series of a function of real variable
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in FOURIER-TRANSFORM
- Proof of Fourier transform of cos$2\pi ft$
- Find the convergence of series of a sequence of functions in $L^2(\mathbb{R})$
- solving a simple ODE with Fourier transform
- How can we prove that $e^{-jωn}$ converges at $0$ while n -> infinity?
- Show that a periodic function $f(t)$ with period $T$ can be written as $ f(t) = f_T (t) \star \frac{1}{T} \text{comb}\bigg(\frac{t}{T}\bigg) $
- Taking the Discrete Inverse Fourier Transform of a Continuous Forward Transform
- Arcsin of a number greater than one
- Complex numbers in programming
- Power spectrum of field over an arbitrarily-shaped country
- Computing an inverse Fourier Transform / Solving the free particle Schrödinger equation with a gaussian wave packet as initial condition
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
There is an integral representation that shows the inverse transform to be a positive function. A derivation starts with the gamma function: \begin{align} \Gamma(\alpha)&=\int_{0}^{\infty}e^{-t}t^{-1+\alpha}dt,\;\; \Re\alpha > 0. \\ \int_{0}^{\infty}e^{-st}t^{-1+\alpha}dt&=s^{-\alpha}\int_{0}^{\infty}e^{-st}(st)^{-1+\alpha}d(st)=\frac{\Gamma(\alpha)}{s^{\alpha}}. \\ \frac{1}{(1+\xi^2)^{\alpha}} &= \frac{1}{\Gamma(\alpha)}\int_{0}^{\infty}e^{-(1+\xi^2)t}t^{-1+\alpha}dt \end{align} Therefore, \begin{align} f^{\vee}(x) & = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{e^{i\xi x}}{(1+\xi^2)^{\alpha}}d\xi \\ &=\frac{1}{\Gamma(\alpha)}\int_{0}^{\infty}t^{-1+\alpha}e^{-t} \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-t\xi^2}e^{i\xi x}ds dt \\ &= \frac{1}{\Gamma(\alpha)}\int_{0}^{\infty}t^{-1+\alpha}e^{-t}\frac{1}{\sqrt{2t}}e^{-x^2/4t}dt \\ &=\frac{1}{\sqrt{2}\Gamma(\alpha)}\int_{0}^{\infty}t^{-3/2+\alpha}e^{-t}e^{-x^2/4t}dt. \end{align}