Is it true that $\iint_S f(ax+by+c) dx dy=2 \int_{-1}^1 \sqrt{1-u^2}f(u\sqrt{a^2+b^2} +c)du $ ?
where $S:=\{(x,y) \in \mathbb R^2 : x^2+y^2 \le 1\}$
I know I need to do a change of variable , but I don't know what change of variable .
Please help . Thanks in advance
Indeed, it is true. Equating the arguments of $f$ we obtain \begin{align*} ax+by+c&=u\sqrt{a^2+b^2}+c\\ \frac{ax+by}{\sqrt{a^2+b^2}}&=u \end{align*}
In order to transform the integral \begin{align*} \iint_{x^2+y^2\leq 1}f(ax+by+c)\,dx\,dy \end{align*}
we first consider the transformation of the disc $x^2+y^2\leq 1$. Since the transformation is a rotation we expect as result the unit disc in the variables $u$ and $v$.
We need the Jacobian determinant $\frac{\partial(x,u)}{\partial(u,v)}$ in order to transform the integral:
\begin{align*} \frac{\partial(x,u)}{\partial(u,v)}&=\begin{vmatrix}x_u&x_v\\y_u&y_v\end{vmatrix} =\begin{vmatrix} \frac{a}{\sqrt{a^2+b^2}}&\frac{-b}{\sqrt{a^2+b^2}}\\ \frac{b}{\sqrt{a^2+b^2}}&\frac{a}{\sqrt{a^2+b^2}}\\ \end{vmatrix}\\ &=\frac{1}{a^2+b^2}\begin{vmatrix}a&-b\\b&a\end{vmatrix}\\ &=1 \end{align*}