Lie derivative and Jacobi bracket for differential k-forms

135 Views Asked by At

Prove, by induction on $k$, that the following result holds for $\omega$ a $k$- form on $\mathbb R^n$

$$(L_\mathbb XL_\mathbb Y-L_\mathbb YL_\mathbb X)\omega=L_{[\mathbb X,\mathbb Y]}\omega .$$

Let $\omega=fd\alpha$, where $f$ is a smooth function and $\alpha$ is a $(k-1)$- form.

Assume that the result is true for $(k-1)$- forms, i.e

$$(L_\mathbb XL_\mathbb Y-L_\mathbb YL_\mathbb X)\alpha=L_{[\mathbb X,\mathbb Y]}\alpha .$$

We also know that

$$(L_\mathbb XL_\mathbb Y-L_\mathbb YL_\mathbb X)f=L_{[\mathbb X,\mathbb Y]}f.$$

I am struggling to show that

$$(L_\mathbb XL_\mathbb Y-L_\mathbb YL_\mathbb X)fd\alpha=L_{[\mathbb X,\mathbb Y]}fd\alpha .$$

I have that at the moment that

$$L_{[\mathbb X,\mathbb Y]}fd\alpha=(L_{[\mathbb X,\mathbb Y]}f)d\alpha+fL_{[\mathbb X,\mathbb Y]}d\alpha=((L_\mathbb XL_\mathbb Y-L_\mathbb YL_\mathbb X)f)d\alpha+f(L_\mathbb XL_\mathbb Y-L_\mathbb YL_\mathbb X)d\alpha$$.