Let $A \in \mathbb{R}^{n\times n}$ be a positive definite matrix, $x \in \mathbb{R}^n$ and $c \in \mathbb{R} \setminus \{0\}$. Determine the maximum $$ \max_{y \in \mathbb{R}^n} \left\{ c^T y : y \in \mathcal{E} (A,x) \right\} $$ where $\mathcal{E} (A,x)$ is an ellipsoid defined by $A$ and $x$.
How can I determine this maximum? Can anyone give me a hint?
The goal is to solve the following maximization problem:
\begin{align*} & \max c^Ty \\ & \text{s.t. } (y-x)^TA^{-1}(y-x) \leq 1 \end{align*}
Consider the Langrangian approach
\begin{align*} & \max c^Ty+\lambda(1-(y-x)^TA^{-1}(y-x))\\ & \text{s.t. } \lambda \geq 0 \end{align*}
Differentiating w.r.t. $y$,
$$c+2\lambda \left[ A^{-1}x-A^{-1}y\right]=0$$
If $\lambda=0$, the equation above will give us a contradiction, hence $\lambda>0$.
Also, $$y=x+\frac{1}{2\lambda}Ac$$
Hence, if I can solve for $\lambda$, I have solve the whole thing.
Substitute that the equation above to the equation of the ellipsoid(Since $\lambda>0$, the optimal solution must occur at the boundary by complementary slackness condition.)
$$\left(\frac{1}{2\lambda}Ac\right)^TA^{-1}\left(\frac{1}{2\lambda}Ac\right)=1$$
and hence,
$$\lambda^2=\frac{1}{4}c^TAc$$
Hence $$y=x+\frac{1}{\sqrt{c^TAc}}Ac$$