What does the notation in the red box mean?
$$\Huge e^{\displaystyle \large \sum_{k=0}^n \bbox[2px,border:2px solid red]{\color{black} { {n \choose k}}}~\omega^k}$$
What does the notation in the red box mean?
$$\Huge e^{\displaystyle \large \sum_{k=0}^n \bbox[2px,border:2px solid red]{\color{black} { {n \choose k}}}~\omega^k}$$
$n\choose{k}$ is a 'binomial coefficient'. Sometimes read '$n$ choose $k$. It represents the number of ways of choosing $k$ items from $n$ distinct items where the order of choice is unimportant.
The value is ${{n}\choose {k}}=\frac{n!}{k!(n-k)!}$
$n$ and $k$ are nonnegative integers with $k\le n$.