Let $(X,\Sigma,\mu)$ is a finite signed measure space. Thus $\mu$ can have negative values.
I couldn't prove that if $A \subset B$ then $\mu(A) \leq \mu(B)$ i.e. monotonicity. It is very clear for measures but I think it is not true for signed measures. However I couldn't find a counter example.
If someone can tell me a counter example or hint me about why it is true, I'll be very glad.
Thanks in advance
Take $\mu=\delta_1-2\delta_2$ on $\Bbb{R}$ where $\delta_a$ is the Dirac measure at $a$
$[0,1] \subseteq [0,2]$
$\mu([0,1])=1>\mu([0,2])=-1$