Good night, I know too little about Calculus III. I'm entering now in the triple integrals world. I started with the Sphere volume and Cylinder. I could calculate it as well. But to the Circular Cone I just can't mount the equation to calculate the volume. My Circular cone have 5cm of height and 3cm as radius. And I'm totally lost with these papers on internet, I'm using cylinders coordinates to calculate. I'm really lost, how do I calculate the volume of this circular cone with triple integrals?? I just need somebody to help me to construct the triple integrals standard to calculate. I'm not at school, I don't have a teacher. I just want to learn it by myself!
2026-02-22 23:25:30.1771802730
Mouting triple integrals to calculate circular cone
55 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Proving the differentiability of the following function of two variables
- If $f ◦f$ is differentiable, then $f ◦f ◦f$ is differentiable
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Number of roots of the e
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- How to prove $\frac 10 \notin \mathbb R $
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
Related Questions in INTEGRATION
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- How to integrate $\int_{0}^{t}{\frac{\cos u}{\cosh^2 u}du}$?
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- How to find the unit tangent vector of a curve in R^3
- multiplying the integrands in an inequality of integrals with same limits
- Closed form of integration
- Proving smoothness for a sequence of functions.
- Random variables in integrals, how to analyze?
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Which type of Riemann Sum is the most accurate?
Related Questions in DEFINITE-INTEGRALS
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Closed form of integration
- Integral of ratio of polynomial
- An inequality involving $\int_0^{\frac{\pi}{2}}\sqrt{\sin x}\:dx $
- How is $\int_{-T_0/2}^{+T_0/2} \delta(t) \cos(n\omega_0 t)dt=1$ and $\int_{-T_0/2}^{+T_0/2} \delta(t) \sin(n\omega_0 t)=0$?
- Roots of the quadratic eqn
- Area between curves finding pressure
- Hint required : Why is the integral $\int_0^x \frac{\sin(t)}{1+t}\mathrm{d}t$ positive?
- A definite integral of a rational function: How can this be transformed from trivial to obvious by a change in viewpoint?
- Integrate exponential over shifted square root
Related Questions in VOLUME
- Is there a volume formula for hyperbolic tetrahedron
- An assignment for kids (Water in a container) leads to an optimization problem
- Number of unique integer coordinate points in an $n$- dimensional hyperbolic-edged tetrahedron
- Volume of a region enclosed between a surface and various planes
- Find volume of 3d solid bounded by surfaces
- Application of Gauss' Divergence Theorem
- Relative volume of $\delta$-fattening (neighborhood) of a compact set
- How to calculate volume of revolution between a curve and a line
- How to prove the space of divergence-free vector fields on a manifold is infinite dimensional?
- How do you calculate volume with cubes of fraction lengths?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Consider the following figure
The equation of the thick red line in an $r,z$ coordinate system is $$z=\frac53 r.$$ The vertical black line intersects the cone at $\frac53 r$ and at $z=5$.
So we can get the volume of the cone as the following integral
$$\int_0^{2\pi}\int_0^3\int_{\frac53r}^5\ dz\ dr \ d\varphi=\int_0^{2\pi}\int_0^3\ 5-\frac53 r\ dr\ d\varphi=$$ $$=\int_0^{2\pi}\frac{15}2\ d\varphi=15\pi.$$