The Bessel Function of the First Kind $J_a(x)$, and the Bessel Function of the Second Kind $Y_a(x)$, at least when $a$, is an integer or half integer are cyclical, as their values go from positive to negative and from negative to positive an infinite number of times as $x$ increases. They are not periodic however as the period length, in which $J_a(x)$ or $Y_a(x)$ are positive, or in which $J_a(x)$ or $Y_a(x)$ are negative is not the same for every cycle. For the nth cycle of $J_a(x)$ or $Y_a(x)$, in which n is an integer, is there a formula for the period length of that cycle?
2026-02-22 22:51:05.1771800665
Period of a particular Cycle for a Bessel Function
679 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Proving the differentiability of the following function of two variables
- If $f ◦f$ is differentiable, then $f ◦f ◦f$ is differentiable
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Number of roots of the e
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- How to prove $\frac 10 \notin \mathbb R $
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
Related Questions in LIMITS
- How to prove $\lim_{n \rightarrow\infty} e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} = \frac{1}{2}$?
- limit points at infinity
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Maximal interval of existence of the IVP
- Divergence of power series at the edge
- Compute $\lim_{x\to 1^+} \lim_{n\to\infty}\frac{\ln(n!)}{n^x} $
- why can we expand an expandable function for infinite?
- Infinite surds on a number
- Show that f(x) = 2a + 3b is continuous where a and b are constants
- If $a_{1}>2$and $a_{n+1}=a_{n}^{2}-2$ then Find $\sum_{n=1}^{\infty}$ $\frac{1}{a_{1}a_{2}......a_{n}}$
Related Questions in INTEGERS
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Which sets of base 10 digits have the property that, for every $n$, there is a $n$-digit number made up of these digits that is divisible by $5^n$?
- Ring of remainders definition
- Proof of well-ordering property
- Compute a division with integer and fractional part
- Solving for 4 variables using only 2 equations
- For any natural numbers a, b, c, d if a*b = c*d is it possible that a + b + c + d is prime number
- Can I say this :$e^{{(294204)}^{1/11}}-{(294204)}^{1/11}$ integer number or almost integer?
- Pack two fractional values into a single integer while preserving a total order
- What will be the difference?
Related Questions in BESSEL-FUNCTIONS
- How to prove $\int_{0}^{\infty} \sqrt{x} J_{0}(x)dx = \sqrt{2} \frac{\Gamma(3/4)}{\Gamma(1/4)}$
- What can be said about the series $\sum_{n=1}^{\infty} \left[ \frac{1}{n} - \frac{1}{\sqrt{ n^2 + x^2 }} \right]$
- A closed-form of an integral containing Bessel's function
- Sources for specific identities of spherical Bessel functions and spherical harmonics
- The solution to the integral $\int_{0}^{\infty} \log(x) K_{0}(2\sqrt{x})\,dx$
- Laplace transform of $t^\mu I_\nu(at)$
- Integral of product of Bessel functions of first kind and different order and argument
- Series involving zeros of Bessel functions
- Finding the kernel of a linear map gotten from a linear map with one kind of bessel function $j_i$ and replacing them with the $y_j$
- Transcendental equation with Bessel function
Related Questions in ALMOST-PERIODIC-FUNCTIONS
- $B=\{t\in[-T,T]:|f(\sigma+it)|>\ell\}$, does it hold that $|B|>\epsilon 2T$
- Period of f given
- "Beats" via trig identity or something?
- Almost periodic function with mean value zero
- Showing integral of continuous function is differentiable
- what is the fundamental period of $\sin{x}$ and $\sin[x]$
- Special function $ 1 + \sum_{n=1}^{\infty} n \frac {z^{t(n)}}{t(n)!} $?
- Is Heaviside step function or unit step function periodic?
- Besicovitch almost periodic functions with seminorm zero
- Mean value of an almost periodic function
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?